Five Years and 5 Billion Gallons: Evaluating the Narragansett Bay Commission CSO Abatement Project

Narragansett Bay Commission

Thomas Uva
Director of Planning, Policy & Regulation
CSO outfall discharges:

- Contain everything that is typically flushed or poured down the drain
- Contain residential, industrial & commercial business discharges
- Contain Stormwater and runoff pollutants, like oils, grease, heavy metals, nutrients, road salt, sand, animal waste, litter, plastics…
- 772 US Cities have CSOs
CSOs – What’s the Problem?

CSO outfall discharges:

• Cause Aesthetic impacts - Floatables
• Cause beach closures due to bacterial contamination
• Cause shellfishing bed closures
• Adversely impact human and aquatic health,
• Cause violations of water quality standards – Bacteria, DO, Clarity
• Can promote Algae growth and reduce oxygen levels in the water.
Three Phases over 20 years

- Design storm: 3-month -1.6 inches of rain in 6 hours

PHASE 1 (2001 – Nov 2008)
- 26 ft diameter deep rock tunnel
- 3+ mile long, 300 ft. below ground
- 62 MG design capacity (actual~65 MG)
- 7 drop shafts to divert flow to tunnel
- Diversion structures at 8 CSOs
- Relief structures at 2 interceptors
- Collects sewer/stormwater from 12 CSOs in FP area
- ~$359 million
CSO Abatement Tunnel: Phase I

Expected benefits:

• Reduce annual CSO volume by 39%
• Reduce fecal coliform bacteria load by 40%
• Reduce TSS by 30%
• Reduce BOD by 31%
• Reduce the acre-days of shellfish closure in northern half of Upper Narragansett Bay by 47% and 77% in southern half.

Combined system with the 65 million gallon CSO Tunnel, which captures & stores stormwater until it can be treated at the WWTF.
CSO Abatement Project Phase II and Phase III

- Phase II construction to be complete by end of 2014
- Reevaluation of Phase III underway, scheduled to be completed 2020
- Expected benefits after all Phases complete:
 - Reduce annual # overflows by 95%
 - Reduce annual overflow volume 98%
 - Reduce annual CSO fecal coliform load 98%
 - Reduce CSO TSS & BOD loads 78% and 80%
 - Reduce acre days of shellfish closure by 65% in northern upper Bay, 95% in southern upper Bay
 - Eliminate floatables
- Estimate Costs: $1.2 - $1.3 Billion
 - Phase I = $359 million
 - Phase II = $270 million
 - Phase III = $603 million
Combined Sewer Overflow Volumes
Phase I Bucklin Point Treatment Facility Improvements

• Wet weather treatment facility constructed in 2006 (part of Phase I project)
• Prior to 2006: Flows > 60 MGD Bypassed Treatment via diversion structure directly to river
• Wet Weather Facility can now treat flows up to 116 MGD before bypass
Bucklin Point Wet Weather Treatment

- Average # diversion structure discharges/year reduced:

<table>
<thead>
<tr>
<th>Pre-Wet Weather Treatment</th>
<th>Post-Wet Weather Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>7</td>
</tr>
</tbody>
</table>

- Annual diversion structure overflow volume reduced by 95% after wet weather treatment went online.
Overflow 067 Volume Significantly Reduced due to Tunnel
Overflow 067 Flows Collected in Tunnel until it fills, then can bypass
Field’s Point Wet Weather Treatment

- Average # Wet Weather events/year reduced:

<table>
<thead>
<tr>
<th>Pre-Tunnel</th>
<th>Post-Tunnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>7</td>
</tr>
</tbody>
</table>

- FP WWTF - Reduced annual volume of wet weather discharge by 94% (84% if Mar 2010 storms included)
Pollutants Removed Due To Tunnel

- Tunnel captured ~5.5 billion gallons of CSO flow over past 5 years
- Captured Flow is pumped to FP WWTF and receives full secondary and tertiary treatment
- ~1.1 billion gallons/year captured
 - 50% of the CSO volume captured and treated annually (based on design model)
 - 50% Bacteria Load Reduction!!!
- Millions of pounds of pollutants prevented from being discharged
 - >2 Million Pounds TSS
 - >1.3 Million Pounds BOD
 - ~134,000 Pounds Nitrogen

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Average Concentration CSO Tunnel Effluent</th>
<th>Total Pounds Removed by Capture in Tunnel & Treatment at Field's Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Volume Captured in Tunnel</td>
<td>5,537,250,000 gallons</td>
<td></td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>52.18 mg/L</td>
<td>134,889</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand</td>
<td>32.06 mg/L</td>
<td>1,309,169</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>8.86 mg/L</td>
<td>134,436</td>
</tr>
<tr>
<td>Cyanide</td>
<td>6.29 µg/L</td>
<td>224</td>
</tr>
<tr>
<td>Aluminum</td>
<td>248 µg/L</td>
<td>10,211</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1.98 µg/L</td>
<td>84</td>
</tr>
<tr>
<td>Chromium</td>
<td>8.24 µg/L</td>
<td>317</td>
</tr>
<tr>
<td>Copper</td>
<td>13.19 µg/L</td>
<td>435</td>
</tr>
<tr>
<td>Iron</td>
<td>1,357 µg/L</td>
<td>47,955</td>
</tr>
<tr>
<td>Lead</td>
<td>9.13 µg/L</td>
<td>373</td>
</tr>
<tr>
<td>Nickel</td>
<td>16.43 µg/L</td>
<td>138</td>
</tr>
<tr>
<td>Silver</td>
<td>3.15 µg/L</td>
<td>135</td>
</tr>
<tr>
<td>Zinc</td>
<td>34.23 µg/L</td>
<td>1,117</td>
</tr>
</tbody>
</table>
Urban River Bacteria Sampling

Monitoring

- NBC monitors rivers for Bacteria
- Required by DEM RIPDES Permits (CSO 9 Minimum Controls Program)
- Monitor Up/Downsteam of CSOs
- 1 station on Pawtuxet River as baseline for non CSO river

Areas affected by Phase I Tunnel Project

- Upper Providence River - Majority of CSOs tied into the Phase I tunnel
- Moshassuck River – 1 CSO tied in
- Woonasquatucket River - 2 modifications to regulator structures
Freshwater Bacteria Water Quality Standards (Urban Rivers)

• Freshwater Fecal Coliform Bacteria Criteria

Primary Contact Recreational/Swimming Criteria:

• Geometric mean value Not More than 200 MPN/100 ml, and

• Not more than 10% of the total samples shall exceed 400 MPN/100 ml

• Fecal values apply when enterococci data are not available.
Urban River Bacteria Data Analysis
Wet Weather Results Pre vs Post Phase I Tunnel

Moshassuck River - Wet Weather Fecal Coliform Geometric Means
- Geometric Mean (MPN/100 mL)
- Wet Pre-Phase I
- Wet Post-Phase I
- Primary Contact Criterion

15-16%

Woonasquatucket River - Wet Weather Fecal Coliform Geometric Means
- Geometric Mean (MPN/100 mL)
- Wet Pre-Phase I
- Wet Post-Phase I
- Primary Contact Criterion

16-38%
Urban River Bacteria Data Analysis
Wet Weather Results Pre vs Post Phase I Tunnel

- Moshassuck River mouth ↓ 16%
- Woonasquatucket River mouth ↓ 16%
- Providence River headwaters ↓ 18%
• NBC monitors stations upstream of CSOs

• Also samples Pawtuxet River (no CSOs on this river)

• NBC Data shows frequent water quality violations at all stations
River Wet Weather Bacteria Levels

Pre-Phase I
2004 – October 2008

Post-Phase I
October 2008 – September 2013
No stations met primary contact criteria in all weather conditions (Wet and Dry)

Some stations met criteria using only dry weather results, but only in some years
- Woonasquatucket River station met standards upstream of CSOs in 2008 in dry weather
- Blackstone River station met upstream of CSOs in 2005-2010, 2013 in dry weather
- Blackstone River station met downstream of CSOs in 2012 in dry weather
- Pawtuxet River station met in 2008, 2009

Stations unaffected by CSOs are not meeting criteria...other pollution sources upstream of CSOs need to be addressed
River Water Quality Data for Locations Unaffected by CSOs

<table>
<thead>
<tr>
<th>River *</th>
<th>All Weather</th>
<th>Wet Weather</th>
<th>Dry Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moshassuck River</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>West River</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Woonasquatucket River</td>
<td>0%</td>
<td>0%</td>
<td>10%</td>
</tr>
<tr>
<td>Blackstone River</td>
<td>0%</td>
<td>0%</td>
<td>70%</td>
</tr>
<tr>
<td>Pawtuxet River</td>
<td>0%</td>
<td>0%</td>
<td>22%</td>
</tr>
</tbody>
</table>

*Data reviewed for May to October Season for 2004 - 2013. The Pawtuxet River station is located on a river without any NBC CSOs and is included for reference.
Stormwater Impairments

Stormwater Discharge Data 2013

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>India Point - East</th>
<th>India Point - West</th>
<th>India Point - Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecal Coliform</td>
<td>MPN/100 mL</td>
<td>24,000</td>
<td>819,756*</td>
<td>252,654</td>
</tr>
<tr>
<td>Enterococcus</td>
<td>MPN/100 mL</td>
<td>>2,420</td>
<td>>2,420</td>
<td>2,420</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td>130.00</td>
<td>118.00</td>
<td>124.00</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>mg/L</td>
<td>4.65</td>
<td>2.74</td>
<td>3.70</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>mg/L</td>
<td>3.37</td>
<td>1.60</td>
<td>2.49</td>
</tr>
<tr>
<td>Nitrite + Nitrate</td>
<td>mg/L</td>
<td>1.28</td>
<td>1.14</td>
<td>1.21</td>
</tr>
<tr>
<td>Ammonia</td>
<td>mg/L</td>
<td>1.92</td>
<td>0.85</td>
<td>1.39</td>
</tr>
<tr>
<td>Dissolved Aluminum</td>
<td>µg/L</td>
<td>57.54</td>
<td>69.03</td>
<td>63.29</td>
</tr>
<tr>
<td>Dissolved Silver</td>
<td>µg/L</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
</tr>
<tr>
<td>Dissolved Cadmium</td>
<td>µg/L</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Dissolved Chromium</td>
<td>µg/L</td>
<td>1.64</td>
<td>4.38</td>
<td>3.01</td>
</tr>
<tr>
<td>Dissolved Copper</td>
<td>µg/L</td>
<td>51.68</td>
<td>59.65</td>
<td>55.67</td>
</tr>
<tr>
<td>Dissolved Iron</td>
<td>µg/L</td>
<td>169.30</td>
<td>196.60</td>
<td>182.95</td>
</tr>
<tr>
<td>Dissolved Nickel</td>
<td>µg/L</td>
<td>1.75</td>
<td>2.42</td>
<td>2.08</td>
</tr>
<tr>
<td>Dissolved Lead</td>
<td>µg/L</td>
<td>36.15</td>
<td>27.16</td>
<td>31.66</td>
</tr>
<tr>
<td>Dissolved Zinc</td>
<td>µg/L</td>
<td>93.05</td>
<td>140.80</td>
<td>116.93</td>
</tr>
<tr>
<td>Total Metals Silver</td>
<td>µg/L</td>
<td>0.07</td>
<td>0.19</td>
<td>0.13</td>
</tr>
<tr>
<td>Total Metals Cadmium</td>
<td>µg/L</td>
<td>0.24</td>
<td>0.30</td>
<td>0.27</td>
</tr>
<tr>
<td>Total Metals Chromium</td>
<td>µg/L</td>
<td>2.57</td>
<td>9.19</td>
<td>5.88</td>
</tr>
<tr>
<td>Total Metals Copper</td>
<td>µg/L</td>
<td>91.95</td>
<td>152.78</td>
<td>122.36</td>
</tr>
<tr>
<td>Total Metals Iron</td>
<td>µg/L</td>
<td>1,898</td>
<td>1,757</td>
<td>1,828</td>
</tr>
<tr>
<td>Total Metals Nickel</td>
<td>µg/L</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Total Metals Lead</td>
<td>µg/L</td>
<td>121.86</td>
<td>194.38</td>
<td>158.12</td>
</tr>
<tr>
<td>Total Metals Zinc</td>
<td>µg/L</td>
<td>290.50</td>
<td>220.86</td>
<td>255.68</td>
</tr>
<tr>
<td>Total Metals Arsenic</td>
<td>µg/L</td>
<td>1.59</td>
<td>1.49</td>
<td>1.54</td>
</tr>
<tr>
<td>Total Metals Selenium</td>
<td>µg/L</td>
<td>1.06</td>
<td>0.56</td>
<td>0.81</td>
</tr>
<tr>
<td>Total Metals Aluminum</td>
<td>µg/L</td>
<td>1,446</td>
<td>921</td>
<td>1,184</td>
</tr>
<tr>
<td>Total Metals Molybdenum</td>
<td>µg/L</td>
<td>1.35</td>
<td>2.52</td>
<td>1.93</td>
</tr>
</tbody>
</table>

* Geomean of replicate samples: >24,000,000 & 28,000 MPN/100 mL

- Stormwater lines at India Point Park sampled on August 22, during a storm of 0.49 inches of rainfall
- Stormwater lines have treatment systems (Vortechnics systems)
- Variation in some parameters between the outfalls
- Fecal coliform:
 - Range from 24,000 to >24,000,000 MPN/100 mL
 - Exceeded primary contact criteria
- All Enterococci samples were >2,420 MPN/100 mL
Saltwater Bacteria Water Quality Standards

- Saltwater Fecal Coliform Bacteria Criteria

 Shellfishing Criteria:

 • Geometric mean Not to exceed 14 MPN/100 ml, and
 • No more than 10% of the samples shall exceed 49 MPN/100 ml

 Primary Contact Recreational/Swimming Criteria:

 • Geometric mean Not to exceed 50 MPN/100 ml, and
 • No more than 10% of the total samples taken shall exceed 400 MPN/100 ml,

 • Fecal values apply when enterococci data are not available.
Upper Bay Bacteria Monitoring

- 20 NBC Bay monitoring stations in Seekonk and Providence “Rivers”
- Biweekly throughout year for fecal coliform bacteria
- Data from 2004 - Present
- Majority of CSOs tied into the Phase I tunnel were in the upper Providence River
Providence River

- Upper Providence River did not meet WQ Standards
- FP WWTF outfall to Gaspee Point met more frequently after Phase I
- Lower Providence River met both criteria most years, improved post Phase I
 - 65% of years met pre Phase I
 - 84% of years met post Phase I
Upper Bay Bacteria Data Analysis
Providence River

- Overall 37% decrease in bacteria levels in all weather
- 41% Overall decrease in Wet Weather
- 45% decrease in Upper Providence River
- 15% decrease in Lower Providence River
Upper Bay Bacteria Data Analysis
Providence River

Fecal coliform Geometric Mean Pre and Post Phase I by Sampling Location

- Point Street Bridge closest to CSOs tied into Tunnel
- Biggest impact on bacteria levels! (68% decrease)
Upper Bay Bacteria Data Analysis
Seekonk River

- NBC Samples 6 Locations on the Seekonk River
- All Locations decreased in 2006 -2008 due to BP wet weather treatment (23%)
- Decreased again in 2009 due to Phase I Tunnel (39%)
- Seekonk tidally influenced by Providence River bacteria levels
- Overall, decrease 47% 2004-05 to 2009-2013 in wet weather, 46% for all weather data
Upper Bay Bacteria Data Analysis
Meeting Water Quality Standards? – Seekonk River

May - October Annual Seekonk River Fecal coliform Geometric Mean

Fecal coliform geometric mean (MPN/100ml)

- 316 (2004)
- 350 (2005)
- 259 (2006)
- 226 (2007)
- 304 (2008)
- 190 (2009)
- 187 (2010)
- 245 (2011)
- 264 (2012)
- 249 (2013)

Primary Contact Criteria (50 MPN/100ml)
Upper Bay Wet Weather Bacteria Levels

Pre-Phase I
2004 - October 2008

Post-Phase I
October 2008 - September 2013
Shellfishing Analysis
Has Phase I Improved Upper Bay Shellfisheries?

• **Shellfishing Standard**
 - Geometric mean Not to exceed 14 MPN/100 ml, and
 - No more than 10% of the samples shall exceed 49 MPN/100 ml

• **Before Phase I:**
 - Cond. Area A closed for week with 0.5 inches of rainfall within a 24 hour period
 - Cond. Area B closed with 1.0 inch of rain

• **Regulations Relaxed in 2011:**
 - Cond. Area A closed with 0.8 inches of rain
 - Cond. Area B with 1.5 inches of rain

• Area A expected to be open 65 more days/yr and Area B is projected to be open 45 more days/yr

• RIDEM attributes closure changes to success of Phase I CSO Project
RIDOH Report
- Evaluated WQ at Bristol, Barrington & Conimicut Beaches for 2006 vs 2010 (similar rain)
- Found closure events decreased by 44%
- Found closure days decreased by 82%
- Attributed to Phase I Tunnel Project

"Urban Beach Initiative" Report
- RIDOH sampled 3 beaches in the Providence River - Sabin Point, Rosa Larisa Park & Gaspee Point
- Evaluated for potential use as licensed beaches
- ~85% compliance rate with pathogen standards
- Compliance, varied with rainfall
- Compliance rates similar to what was found in beaches in areas not impacted by CSO’s

Phase I has Improved water quality of Upper Bay Beaches
CSO Abatement Tunnel: Phase I

Were the Goals Achieved?

| Expected benefits: | Were the Goals Met???
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce annual CSO volume by 39%</td>
<td>YES, ~50% Reduction Achieved</td>
</tr>
<tr>
<td>Reduce fecal coliform bacteria load by 40%</td>
<td>YES, ~50% Reduction Achieved</td>
</tr>
<tr>
<td>Reduce TSS by 30%</td>
<td>YES, ~45% Reduction Calculated</td>
</tr>
<tr>
<td>Reduce BOD by 31%</td>
<td>YES, ~44% Reduction Calculated</td>
</tr>
<tr>
<td>Reduce the acre-days of shellfish closure in northern half of Upper Narragansett Bay by 47% and 77% in southern half.</td>
<td>No! DEM did not change the Shellfishing regulations until May 2011 and the closure acres has not changed, but the Rainfall Closure Criteria has been relaxed, providing more fishing days.</td>
</tr>
</tbody>
</table>
NBC User Fees

Providence Median Household Income: $38,243
Central Falls Median Household Income: $29,268

* Data based on U.S. Census Bureau, American Community Survey, 5-Year Estimate, 2008-2012
Conclusions

Phase I CSO Tunnel Project has:

• Captured ~1.1 Billion Gallons/Year of CSO Flow
• Reduced CSO Volume and Bacteria Loads by ~50%
• Reduced bacterial contamination levels in our Urban Rivers and Upper Bay
• Prevented millions of pounds of pollutants from discharging to our rivers and Narragansett Bay
• DOH Reports: Upper Bay Beaches meet bacteria standards 85% of summer season & 3 new Upper Bay beaches could open
• DEM Relaxed Shellfishing Closure standards due to Phase I success
• But, monitoring stations unaffected by CSOs are not meeting standards
• NBC CSO Abatement Program WILL NOT make waters fishable & swimmable unless other pollution problems are addressed
Thank you!

Thank you to:
- Cathy Oliver, Christine Comeau, Pamela Reitsma, Jim Kelly & John Motta
- NBC Monitoring Staff
- NBC Laboratory Staff

Any Questions?

Data is available on NBC Website at http://snapshot.narrabay.com